Land Use Planning for Integrated Water Management

December 12, 2012

DWR-SSU Integrated Water Management Team:

Elizabeth Patterson Alex Hinds

Nathan Andrews
Brian Gunn
Allison Lassiter
Laura O'Dea

Preliminary Findings

- There are few user-friendly tools which test and compare Low Impact Development scenarios
- Data is inconsistently available
 - Maintenance
 - Green infrastructure
- Less infrastructure is cheaper
 - Most cost effective residential development has least impervious surfaces

Project Objectives

- 1. Quantify relationship between land use and water supply benefits:
 - Water supply reliability
 - Flood management
 - Water quality
 - Habitat value
 - Climate Action Mitigation
- 2. Create an accessible tool which can be used to help guide land use decision making

Approach

- Review existing tools
- Develop new tool
- Apply to case studies
- Quantify differences in case studies
- Identify lessons learned

Tool Review

Lessons from Existing Tools

- Comprehensive metrics
- Spatial scaling
- Local specificity
- Modifiable by anyone
- Clear user interface

Open and Accessible

- Users
 - Project developers
 - Elected and appointed decision-makers
 - Board of supervisors
 - Council members
 - Planning commissioners
 - Regional agencies
 - Researchers
- Microsoft Excel
 - All formulas can be accessed and changed
 - All data can be modified for local conditions

Scaling Up

- How do development choices scale?
 - Lot
 - Neighborhood
 - City
 - County
 - Watershed

Focus of this tool: what is the impact of residential?

Study Area: Sonoma County

Lot

Neighborhood

City or Town

County

Watershed

Comprehensive Metrics

- 1 Percent Impervious Surfaces
- 2 Stormwater Runoff (from Impervious Surfaces)
- 3 Outdoor Water Requirements
- 4 Greenhouse Gas Emissions (from Outdoor Water)

Comprehensive Metrics

- 5 Cost of Implementation
- 6 Cost over 50 years
- 7 Cost over 100 years

Percent Imperviousness

1 2 3 4 5 6 7

Stormwater Runoff

Month	Rain (in)					
January	4.05					
February	4.78					
March	3.83					
April	2.18					
May	1.62					
June	0.43					
July	0					
August	0					
September	0					
October	1.79					
November	2.19					
December	7.47					

Outdoor Water Requirement

WUCOLS

- Evapotranspiration zone (ET)
- Species-specific plant water use coefficient
- Planting density
- Environmental exposure
- Irrigation efficiency

Greenhouse Gasses

Cost of Implementation

А	В	L	U	E	F	G	Н		J	
	Construction Cost	(\$)		Maintena	nce Cost		Lifespan	Lifespan (Years)		Source
Green Roof (Sq Ft)	22	28.5	35				20	ł	30	Bertotti
Permeable Pavement - Pavers (Sq Ft)	17	19.5	22				25		50	Bertotti
Permeable Pavement - Porous Asphalt (Sq Ft)	1.98	2.25	2.6							Empire A
Permeable Pavement - Porous Concrete (Sq Ft)	4.5	6	7.5							Empire A
Permeable Pavement - Gravel (Sq Ft)	6	7	8				25	37.5	50	Bertotti
Turf (Artificial) (Sq Ft)	9	10	11				15	20	25	http://w
Turf (Lawn) (Sq Ft)	0.75	1	1.25				10	15	20	Berottti
Native Plants (1 gallon/1 sq.ft.)		8.45								DetailsLa
Rain Garden										
Trees (15 gallon/per tree)	115	132.5	150					15		Ron DeN
Tree Box Filters		7100								DetailsLa
Bioswales (18"x18"/sq.ft.)		37.25								DetailsLa
Downspout Disconnection		225								Letitia H
Planter Boxes (avg. size 4 x 8)		354								DetailsLa
Rain Barrels (per 100 gallon reservoir)		580								DetailsLa
Rain Harvesting System - Welded Steel Tank		6900						35		Nicole O
Rain Harvesting System - Poly Tank		3810.4						20		Nicole O
Vegetated Filter Strips										
Amended Soil (Cubic Yard)	35	42.5	50							Bertotti
French Drain (Cubic ft avg)		14								DetailsLa
Greywater system (sq ft)		0.50								http://gr
Irrigation Controller (includes wiring)		394								Detailsta

Methods Used

- Sources include:
 - private and commercial contractors,
 - landscape developers and architects,
 - plant nurseries, public agencies, and webbased research.
- Methods:
 - Over the phone, email, web-based.

2 3 4

Data Limitations

Cost data availability varied and is still in progress

 Prices often differed between multiple sources so they were averaged together.

1 2 3 4 5 6 7

Maintenance and Lifecycles

Predicated on various conditions:

-weather, maintenance, quantity of water expose, quality of component, quality of installation, and intensity of use.

Selecting Case Studies

Single Family Residential:

- Traditional
- SUSMP
- GreenPoint

Mixed Use (including SFR):

One Planet

Case Study Characteristics

TRADITIONAL (1977):

301 residential units, 6 units/acre

SUSMP (2005):

149 residential units, 9 units/acre

GREENPOINT (2005):

162 residential units, 4.58 units/acre Not yet completed

ONE PLANET (2010):

1892 residential units, 10.5 units/acre Not yet completed

Stormwater Regulation Differences

TRADITIONAL:

Pre-stormwater runoff regulations (initiated in 1987)

SUSMP:

Adhered to local regulations

GREENPOINT:

Adhered to local regulations and Cal Green Codes

ONE PLANET:

Adhered to local regulations, Cal Green, LEED, One Planet standards

Tool Inputs

- Land cover
- Water infrastructure

Translating from Site to Tool

Traditional Neighborhood

SUSMP

SUSMP Neighborhood

GreenPoint

GreenPoint Neighborhood

Estimating One Planet Lots

- City's Code of Ordinances
 - Lot Size
 - Space Between Structure and Lot Line
 - Location and Size of Driveway
 - Maximum Percent Turf
- Landscaping
 - Combine Zoning Code With Own Discretion
 - Turf
 - Trees
 - Remaining Landscaping
 - Rain Garden
 - Rain Barrels

One Planet Neighborhood

- Streets
 - City's Streets and Roadway Design
 Standard
- Sidewalks
 - City's Code of Ordinances
- Size, Housing Location, Green Space, Type of Streets, Parking Areas
 - Final Development Plan

Preliminary Results: Land Cover

	Copperfield	Woodbridge	Meritage	SMV
Total Lot Size	5,318	5,562	5,023	5,509
Composite Roof	2,480	1,831	2,001	2,080
Concrete	777	2,069	435	0
Permeable Pavers	0	0	0	828
Turf Grass	598	1,125	0	364
Cultivated Garden	0	0	0	185
Sparse Vegetation	1,228	0	2,587	2,052
Dense Vegetation	235	537	0	0
Trees (count)	3	9	4	4

Preliminary Results: Land Cover

Preliminary Results: Tool Metrics

Preliminary Results: Land Cover

	Copperfield	Woodbridge	Meritage	SMV
Percent Impervious	61%	70%	48%	38%
Peak Monthly Runoff	15,157	18,150	11,337	9,680
Peak Monthly Outdoor Water	4,492	6,094	2,775	3,711
Peak Monthly GHG	0	0	0	0
Cost, Implementation	\$23,828	\$26,835	\$24,431	\$40,013
Cost, 50 years	\$32,816	\$47,328	\$24,053	\$62,078
Cost, 100 years	\$65,034	\$93,531	\$47,575	\$107,116

Preliminary Findings

- There are few user-friendly tools which test and compare Low Impact Development scenarios
- Data is inconsistently available
 - Maintenance
 - Green infrastructure
- Less infrastructure is cheaper
 - Most cost effective residential development has least impervious surfaces

Less Infrastructure is Less Expensive

- Impervious surfaces are costly
 - Replacement of surfaces over time
 - Storm water runoff requires even more infrastructure

- Better to adapt than mitigate
 - Less additional infrastructure is best

Not all Infrastructure is Equal

- Upfront costs
- Lifecycle costs
 - Maintenance
 - Replacement
- Spillovers
 - Green infrastructure as public amenities

Simple is Good

Opportunities/Challenges

- Align cost incentives
 - Who builds?
 - Who maintains?
 - Who benefits?
- Link upstream LID and downstream grey infrastructure
 - Watershed planning
 - Cumulative impacts
- Importance of spatial scales

Actions

Reduce hardscape

Limit building footprints

Plan for water-smart landscapes and developments

Questions? Comments?